(AM)
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4 Amplitude/Linear Modulation eq (Fm)

4.1. A sinusoidal carrier signal A cos(27 f.t+ ¢) has three basic parameters:

amplitude, frequency, and phase. Varying these parameters in proportion
to the baseband signal results in amplitude modulation (AM), frequenoyﬁ
modulation (FM), and phase modulation (PM), respectively. Collectively,
these techniques are called continuous-wave (CW) modulation [13, p
111][3, p 162).

1necyY
Definition 4.2. Amplitude modulation is characterized by the fact that
the amplitude A of the carrier(A ¢os(27 f.t + ¢) is varied in proportion to
the baseband (message) signal n}(t).

e Because the amplitude is time-varying, we may write the modulated
carrier as Ex

308(27rfct+ ®) Alt) A m (k)

e Because the amplitude is linearly related to the /nessage signal, this
technique is also called linear modulation.

4.3. Linear modulations:
(a) Double-sideband amplitude modulation

(i) Double-sideband-suppressed-carrier (DSB-SC or DSSC or simply
DSB) modulation

(ii) Standard amplitude modulation (AM)
uppressed-sideband amplitude modulation
(b) S d-sideband litud dulati

(i) Single-sideband modulation (SSB)
(ii) Vestigial-sideband modulation (VSB)

16Technically, the variation of “frequency” is not as straightforward as the description here seems to
suggest. For a sinusoidal carrier, a general modulated carrier can be represented mathematically as

x(t) = A(t) cos (2 fet + H(1)) .

Frequency modulation, as we shall see later, is resulted from letting the time derivative of ¢(t) be linearly
related to the modulating signal. [14] p 112]
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4.1 Double-sideband suppressed carrier (DSB-SC) modulation

Definition 4.4. In double-sideband-suppressed-carrier (DSB-SC or

DSSC or simply DSB) modulation, the modulated signal is
amelitude sro‘liﬂj actor

2(t) :@s (27 f.) x m(t).

We have seen that the multiplication by a sinusoid gives two shifted and
scaled replicas of the original signal spectrum:

A A
X(f) ZTM(f_fc)_F?M(f'i_fc)'
e When we set A, = v/2, we get the “simple” modulator discussed in
Example [3.12] Ex. AM vadio % ® 1 MHe } = .é = 200
BX 5 kHa B

e We need Jf@3B! to avoid spectral overlapping. In practice, [faS0B.

4.5. Synchronous/coherent detection by the product demodulator:

The incoming modulated signal is first multiplied with a locally generated
sinusoid with the same phase and frequency (from a local oscillator (LO))
and then lowpass-filtered, the filter bandwidth being the same as the mes-
sage bandwidth B or somewhat larger.

4.6. A DSB-SC modem with mojchanmelimpaiment is shown in Figure[12]
ylt)= «lt)

post- detect: on filtev

m(t) : x(t)‘ Channel Y(t):‘ o) &) -

i
: »( <) L > X
i ! =x(t)!
Message ! : :
(modulating signal) : i '
i i :

@05(27: f.t)

mt) =v (D

~

Modulator

|M(f)l




(k) x [Z corl2TAE) =t
Once again, recall that mes ‘

Similarly,

:M(?‘}'I'JLM

-2_/;) 1-;3-!"\[_ f-:./;)
M (F) LPF[VL¢)}= M (£) YO + O

eliminated by, LPE
Alternatively, we can work in the time domain and utilize the trig. iden-
tity from Example [2.4]

n

v (t) = V2 (t) cos (2m fot) = V2 (\/§m (t) cos (27rfct)) cos (2w fet)
= 2m (t) cos® (2m f.t) = m (t) (cos (2 (2w f.t)) + 1)

=m (t) + m (f) coel2r (2f.)t)

k) = LPRIwe)] =mcty 0

Key equation for DSB-SC modem:

LPF \(m(t)xx/icos(Qﬂfct))Jx(\/5008(2#]‘"35)) —m(t). (31
(1)
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4.7. Implementation issues:
(a) Problem 1: Modulator construction

(b) Problem 2: Synchronization between the two (local) carriers/oscillators

(c¢) Problem 3: Spectral inefficiency X (A
Reeall, wm(k) s veal -valued ‘
ond herce ixs M) ha,) ' .
cOn:]u::Ja'i'l'. S)/W\Mf."rv/. %e l-s: SB\
| m (%) } ' I
e
—— > .

4.8. Spectral inefﬁciegncy/ redundancy: When m(t) is real-valued, its
spectrum M (f) has conjugate symmetry. With such message, the corre-
sponding modulated signal’s spectrum X (f) will also inherit the symmetry
but now centered at f. (instead of at 0). The portion that lies above f, is
known as the upper sideband (USB) and the portion that lies below f.
is known as the lower sideband (LSB). Similarly, the spectrum centered
at —f. has upper and lower sidebands. Hence, this is a modulation scheme
with double sidebands. Both sidebands contain the same (and complete)
information about the message.

4.9. Synchronization: Observe that requires that we can generate
cos (wct) both at the transmitter and receiver. This can be difficult in prac-
tice. Suppose that the frequency at the receiver is off, say by Af, and that
the phase is off by #. The effect of these frequency and phase offsets can be
quantified by calculating (0s ACOSR = %.(CM\&Q: 3) +Col LA—@))

(&)

LPF{(m (t) V2 cos (27cht)> V2 cos (27 (f, 4 Af)t+0)} , LIF

which gives
m (t) cos (2m (Af)t+0).

Whe A/ s 5‘"\“”} m“w" will scale +w MtlSajc

Ls could be ree- o 'Fo/ o while

When Afeo | mLk) cos(p) cuu\3+= \?1—‘ when &= A0, 270,
o o e
Of course, we want Aw = 0 and 6 = 0; that is the Teceiver must generate

a carrier in phase and frequency synchronism with the ¢incoming carrier.
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d
. - T=—
(rlro ‘)Ajaf-on + e ) (d

4.10. Effect of time delay: demedoledo
| - _;ta — 1 A
k) — | modulator >ty —> N ) T-»gxry-—, CrF o
" .
mt.;\ufz cos (274t ) a:U: ) ffeos(2r44)

|
= - — _—— ——

Suppose the propagation time is 7, then we havem
y(t) =z (t=7) = V2m (=) cos (2 f.(f — 7))
= V2m (t — 7) cos (2n ft —
= V2m (t — 7) cos (2n fut —(@0) .
Consequently,
v(t) =y (t) x @COS (27 fet)

= M2 (t — 7) cos (2m fut — b;) x V/2kos (27 f.t)
=m(t —7)2¢0s (2r fot — ;) cos (2m fet).

Applying the product-to-sum formula, we then have

v (t) =m (t—7) (COW”) E— r) + cos (6,))
= o

LPFF
4
Dy s LerleterY = mie-T) cos( By) <

U:l': Soppore /

zy%;z*'-'_z_
z;z;fcfz" l
cos( ) =O = bad
A=%+%k & Z)ﬂ';ﬂ%.=-§+>‘k

In conclusion, we have seen that the principle of the DSB-SC modem is
based on a simple key equation (31)). However, as mentioned in , there
are several implementation issues that we need to address. Some solutions
are provided in the subsections to follow. However, the analysis will require
some knowledge of Fourier series which is reviewed in the next subsection.
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-~ F—S‘a
4.2 Fourier Series

Definition 4.11. Exponential Fourier series: Let the (real or complex)
signal r (t) be a [peFiodiesigial with period Ty. Suppose the following Dirich-
let conditions are satisfied 1 " - r MAOM wal -F’”B'

3

To
(a) r(t) is absolutely integrable over its period; i.e. f 7 (t)|dt < 0.
(b) The number of maxima and minima of r (¢) in each period is finite.
(¢) The number of discontinuities of r (¢) in each period is finite.

Then 7 (t) can be expanded in terms of the complex exponential signals

() s J‘z;;n/p t
Z cn Z ettt 4 c_ke_jl“"ot) (32)
n=—oo k=1
where e’ 7%t '5 ( /?*7[» 9
|_(#) wo = 27 fo = T:’
R (A S (X att, —)rrkht
1 I ] % T (1) Ty, (33)
"3/ -z’f _7{ )c 7-7‘a 5?{3 "fﬂ
(=2~
)Lt
vik) RUE) = J riks t‘:‘J J%
— - ol o= _'J 1 777{{'
r, L~£)®————:—S: 5 Vi Lt e CH SRL $>
for some arbitrary «. In which case, = DS &
- v (bb e at
r(t), if r (t) is continuous at ¢ j e

f(t) - { r(t)+r(t™

5 L if r(t) is not continuous at t e
We give some remarks here.

e The parameter « in the limits of the integration (33)) is arbitrary. It
can be chosen to simplify computation of the integral. Some references
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simply write ¢, = TLO [ r(t) e 7*otdt to emphasize that we only need
Ty
to integrate over one period of the signal; the starting point is not

important.

e The coefficients ¢, = Tio [ r(t)e7™otdt are called the (k') Fourier

To
(series) coefficients of (the signal) r (¢). These are, in general, com-
plex numbers.
e cg == [r(t)dt = average or DC value of r(t)
To
e The quantity f, = Tio is called the fundamental frequency of the
signal r (¢). The nth multiple of the fundamental frequency (for positive
n’s) is called the nth harmonic.
o cpelfol e eIl = the k' harmonic component of r (t).
k =1 = fundamental component of r (t).

4.12. Getting the Fourier coefficients from the Fourier transform:
Consider a restricted version rg, (t) of r(¢) where we only consider r(t) for

JT.'
one specific period. Suppose 7, (t) f Ry, (f). Then,

So, the Fourier coefficients are simply scaled samples of the Fourier
transform.

Example 4.13. Find the Fourier series expansion for the train of impulses

sty = 3 6(t —nTy) drawn in Figure [13| (? L% |
n=—oo L - 2 >
_ Ck_ = T Te
4 eﬂ 17l st R4S ©,

.

l=—=

Figure 13: Train of impulses

- £)=
VT,,U:) =9(t) — RTOL ) =1

-




4.14. The Fourier series in Example 4.13| gives an interesting Fourier trans-
form pair:

HL”' o L 111t

1 2 ‘

17 ., .
> F = X(F)

A special case when T = 1 is quite easy to remember:

ety 2 alt-n) X(£)=s 23(F-k)

-es— k.-._.‘

We can use the scaling property of the delta function to generalize the special

case: -
x(ab—»-;_—xca’-‘)

o
4 s 5(t-g): 25(at-n) = - 5 5(%-k)- 2suf- lear)
el w w= — o le==-o
35(¢-2) 5 o Zﬁ(f-kq) a,=$o
Example 4.15. Find the Fourier coefficients of the square pulse periodic
signal [5, p 57]shown in Figure (14 u Note that multiplication by this signal
is equivalent to a switching (ON-OFF) operation.

1 A

Y7 N

J— é//} ) av‘a : :

--L.- . [ 1
¢ E b

1-3 0 0 4 4 I 0 0
Tz: % % Figure 14: Square pulse periodic signal
£ )

}C
= 24,

o
4. 16 Parseval’s Identity: P, =~ [ |r OPdt= 3 el
TG/L OTO k=—o00
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4.17. Fourier series expansion for real valued function: Suppose
r(t) in the previous section is real-valued; that is 7* = r. Then, we have
c_, = c; and we provide here three alternative ways to represent the Fourier

series expansion:

(0.¢] (0.9]

)= 3 e =t 3 (e o)

n=—00 k=1

(0.9] 0
= +Z ay, cos (kwot) +Z by sin (kwot))
k=1

Z |cx| cos (kwot + Zcy,)

where the corresponding coefficients are obtained from

oz+T0

1 , 1
Cl, = — r (t) e IRt gt = 5 (ak . jbk)

ar = 2Re{ci} = —/r (t) cos (kwot) dt
b= —2Im {o) = / r (1) sin (kwot) dt

0
2|Ck;| = Va%—kb%

Ty
b
/¢, = — arctan (—k>
ag,

o
Co = —
2

The Parseval’s identity can then be expressed as
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4.18. To go from to and (36]), note that when we replace c_j, by

¢, we have
Ckejkwot + C_ke—jkwot _ Ckejkwot + Cze—]kwot

_ Ckejk:wot + (Ckejk‘wot)*
= 2Re {ckejk“’ot} .
e Expression then follows directly from the phasor concept:

Re {cre!™'} = ey cos (kwot + Zey,) -

o To get (35)), substitute ¢, by Re{cx} + jIm{cx}
and e/*0! by cos (kwot) + 7 sin (kwot).

Example 4.19. For the train of impulses in Example 4.13],

o 1 X 1 2
0Nty = > 5(t—kTp) = 70 D ekl = Rl > coskwt  (43)
k=—00 k=—o00 k=1

Example 4.20. For the rectangular pulse train in Example [4.15]

1 2 1 1 1
1 [coswot > 0] = 5—}—— (COS wot — 3 cos 3wpt + R cos dwot — - cos Twot + .. )
s
(44)

Example 4.21. Bipolar square pulse periodic signal [5, p 59]:

4 1 1 1
sgn(coswot) = — (COS wot — 3 cos 3wyt + = cos bwot — = cos Twot + .. )
T

T

Figure 15: Bipolar square pulse periodic signal
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4.3 Classical DSB-SC Modulators

To produce the modulated signal A.cos(27 f.t)m(t), we may use the follow-
ing methods which generate the modulated signal along with other signals
which can be eliminated by a bandpass filter restricting frequency contents
to around f..

4.22. Multiplier Modulators [5, p 184] or Product Modulator[3], p
180]: Here modulation is achieved directly by multiplying m(t) by cos(2m f.t)
using an analog multiplier whose output is proportional to the product of
two input signals.

e Such a multiplier may be obtained from

(a) a variable-gain amplifier in which the gain parameter (such as the
the f of a transistor) is controlled by one of the signals, say, m(t).
When the signal cos(2 f.t) is applied at the input of this amplifier,
the output is then proportional to m(t) cos(2m f.t).

(b) two logarithmic and an antilogarithmic amplifiers with outputs
proportional to the log and antilog of their inputs, respectively.

o Key equation:
Ax B — e(lnA—HnB)'

4.23. Square Modulator: When it is easier to build a squarer than a
multiplier, use > coartm= 1(1 1—co:)

(m (t) + ccos (wet))® = m? (t) 42c¢m (t) cos (wet )\t ¢ c@t)

Ssum L 2 o 2.(2/77/){‘
A lm(/)l :¥)+2cm()cos(wct) —1—3—#5% s (2wet) .

apr © BfF °

‘_ it cos(2741)
T ?ﬂ gl c)gf NV

3) I,[_./‘_'(
(f}
ccos(27/4t) 9. | A+ #4148
Sl 0, obmrwice
TT‘T /i\; 5 ! - ‘;/I\: 't";/
_172 __*; -26 15 24 7[C ?‘7((_
28 < 7(::_6 2¢9 =/2
A
f 238 13 e _9-——-‘/_:. 2 /T



e Alternative, can use (m(t) + ccos (%t))3

4.24. Multiply m(t) by “any” |periodiegandyeven signal r(¢) whose period
is T, = 2X. Because r(t) is an even function, we know that

r(t) =co+ Z a. cos (kw.t) for some ¢y, ay, as, . . ..
k=1

Therefore,

m(t)r (t) = com(t) + Y agm(t) cos (kwet).
k=1

See also [4, p 157]. In general, for this scheme to work, we need

m(t) >(X » BPF ——» m(t)cos(at)
(1 7 {mxr(o)
A Po----e- ! CoA--2--- . —Aa,
_ /\/\ VA
20, | -, | @, 20,
27zB . |/" """ “
T
BPF

Figure 16: Modulation of m(t) via even and periodic r(t)

e a1 # 0; that is T, is the “least” period of r;
e f. > 2B (to prevent overlapping).

Note that if r(¢) is not even, then by (36), the outputted modulated
signal is of the form a;m(t) cos(w.t + ¢1).
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4.25. Switching modulator: Set r(t) to be the square pulse train given
by :

r(t) = 1[coswgt > 0]
1 2 1 1 1
= 5 + - <cosw0t — gcos?mot + gCOS5Ld0t — ?COS Twot + .. ) )
Multiplying this 7(¢) to the signal m(t) is equivalent to switching m(t) on
and off periodically.
It is equivalent to periodically turning the switch on (letting m(t) pass
through) for half a period T, =

C

m(t) M(f)
/\ S

\/_l—>- (l) f—

w(t)

[—>
m(t)w(r) >
iy i 7}\ /X
MU Ll A T
(©)
2
—m(t) cos w,t
Y Bandpass /—\
| -

filter

Figure 17: Switching modulator for DSB-SC [4, Figure 4.4).

4.26. Switching Demodulator: somce ac SW;“‘GV\:AS ferction

— ~ 1

LPF{m(t) cos(w.t) x 1[cos(w.t) > 0]} = %m(t) (45)

[4, p 162]. Note that this technique still requires the switching to be in sync
with the incoming cosine as in the basic DSB-SC.
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